
1
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

Chapter four

Software engineering

Agile Software Development

Rapid software development

 Rapid development and delivery is now often the most important requirement for software

systems

▪ Businesses operate in a fast –changing requirement and it is practically impossible

to produce a set of stable software requirements

▪ Software has to evolve quickly to reflect changing business needs.

 Plan-driven development is essential for some types of system but does not meet these

business needs.

 Agile development methods emerged in the late 1990s whose aim was to radically reduce

the delivery time for working software systems

Agile development

 Program specification, design and implementation are inter-leaved

 The system is developed as a series of versions or increments with stakeholders involved

in version specification and evaluation

 Frequent delivery of new versions for evaluation

 Extensive tool support (e.g. automated testing tools) used to support development.

 Minimal documentation – focus on working code

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Comment on Text
program stages are inter-leaved

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

2
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

Plan-driven and agile development

 Plan-driven development

▪ A plan-driven approach to software engineering is based around separate

development stages with the outputs to be produced at each of these stages planned

in advance.

▪ Not necessarily waterfall model – plan-driven, incremental development is possible

▪ Iteration occurs within activities.

 Agile development

▪ Specification, design, implementation and testing are inter-leaved and the outputs

from the development process are decided through a process of negotiation during

the software development process.

Agile methods

 Dissatisfaction with the overheads involved in software design methods of the 1980s and

1990s led to the creation of agile methods. These methods:

▪ Focus on the code rather than the design

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

3
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

▪ Are based on an iterative approach to software development

▪ Are intended to deliver working software quickly and evolve this quickly to meet

changing requirements.

 The aim of agile methods is to reduce overheads in the software process (e.g. by limiting

documentation) and to be able to respond quickly to changing requirements without

excessive rework.

Agile development techniques

Extreme programming

 A very influential agile method, developed in the late 1990s, that introduced a range of

agile development techniques.

 Extreme Programming (XP) takes an ‘extreme’ approach to iterative development.

▪ New versions may be built several times per day;

▪ Increments are delivered to customers every 2 weeks;

▪ All tests must be run for every build and the build is only accepted if tests run

successfully.

The extreme programming release cycle

XP and agile principles

 Incremental development is supported through small, frequent system releases.

 Customer involvement means full-time customer engagement with the team.

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

4
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

 People not process through pair programming, collective ownership and a process that

avoids long working hours.

 Change supported through regular system releases.

 Maintaining simplicity through constant refactoring of code.

Influential XP practices

 Extreme programming has a technical focus and is not easy to integrate with management

practice in most organizations.

 Consequently, while agile development uses practices from XP, the method as originally

defined is not widely used.

 Key practices

▪ User stories for specification

▪ Refactoring

▪ Test-first development

▪ Pair programming

Agile project management

 The principal responsibility of software project managers is to manage the project so that

the software is delivered on time and within the planned budget for the project.

 The standard approach to project management is plan-driven. Managers draw up a plan for

the project showing what should be delivered, when it should be delivered and who will

work on the development of the project deliverables.

 Agile project management requires a different approach, which is adapted to incremental

development and the practices used in agile methods.

Scaling agile methods

 Agile methods have proved to be successful for small and medium sized projects that can

be developed by a small co-located team.

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight
1

MSI-PC
Highlight
2

MSI-PC
Highlight
3

MSI-PC
Highlight
Agile PM

MSI-PC
Highlight

5
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

 It is sometimes argued that the success of these methods comes because of improved

communications which is possible when everyone is working together.

 Scaling up agile methods involves changing these to cope with larger, longer projects

where there are multiple development teams, perhaps working in different locations.

Scaling out and scaling up

 ‘Scaling up’ is concerned with using agile methods for developing large software systems

that cannot be developed by a small team.

 ‘Scaling out’ is concerned with how agile methods can be introduced across a large

organization with many years of software development experience.

 When scaling agile methods, it is important to maintain agile fundamentals:

▪ Flexible planning, frequent system releases, continuous integration, test-driven

development and good team communications.

Practical problems with agile methods

 The informality of agile development is incompatible with the legal approach to contract

definition that is commonly used in large companies.

 Agile methods are most appropriate for new software development rather than software

maintenance. Yet the majority of software costs in large companies come from maintaining

their existing software systems.

 Agile methods are designed for small co-located teams yet much software development

now involves worldwide distributed teams.

Agile methods for large systems

 Large systems are usually collections of separate, communicating systems, where separate

teams develop each system. Frequently, these teams are working in different places,

sometimes in different time zones.

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight
work

MSI-PC
Highlight

MSI-PC
Highlight

6
Prof. Iman Qays Abduljaleel

Software Engineering (third stage) Computer Science Dept.

 Large systems are ‘brownfield systems’, that is they include and interact with a number of

existing systems. Many of the system requirements are concerned with this interaction and

so don’t really lend themselves to flexibility and incremental development.

 Where several systems are integrated to create a system, a significant fraction of the

development is concerned with system configuration rather than original code

development.

Large system development

 Large systems and their development processes are often constrained by external rules and

regulations limiting the way that they can be developed.

 Large systems have a long procurement and development time. It is difficult to maintain

coherent teams who know about the system over that period as, inevitably, people move

on to other jobs and projects.

 Large systems usually have a diverse set of stakeholders. It is practically impossible to

involve all of these different stakeholders in the development process.

Factors in large systems

MSI-PC
Highlight

MSI-PC
Highlight

MSI-PC
Highlight

